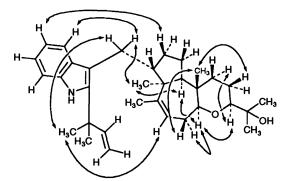

Structure of a New Type of Indoloditerpenoid from Emericella purpurea

Ken-ichi Kawai,* Koohei Nozawa and Shoichi Nakajima Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan

The structure and relative stereochemistry of a new type of indoloditerpenoid designated as emindole PA 1, isolated from the mycelium of *Emericella purpurea*, along with the sesterterpene variecolin recently isolated from *Emericella variecolor*, has been confirmed by a chemical and spectroscopic investigation.

During a search for fungal indoloditerpenoids, two components, one with a bluish and the other a reddish colouration when sprayed with van Urk reagent¹ were detected on TLC, in the dichloromethane extract of *Emericella purpurea* Samson & Mouchacca, strain IFO 30849, which was isolated from Egyptian desert soil.² The former compound was identical with variecolin, a sesterterpene recently isolated from *E. varievolor* Berkeley & Broome was shown to be an angiotensin II receptor binding inhibitor,³ whereas the latter was a new compound which we designated as emindole PA 1.

The molecular formula of 1 was confirmed by high resolution electron-impact ionization (EI) mass spectrometry as $C_{33}H_{47}$ -NO₂. A positive colouration with van Urk reagent (reddish purple)¹ and the fragment ion at m/z 130 [(C_9H_8N)⁺, 12%] in the EI mass spectra suggested the presence of an indole moiety. The ¹H NMR spectrum of 1 was similar to that of emindole DB 2, which has been isolated from *E. desertrum* Samson &



Mouchacca,⁴ except for the appearance of signals assigned to a 1,1-dimethylallyl residue $[\delta_{\rm H} 6.12 (1 \text{ H}, \text{ dd}), 5.13 (1 \text{ H}, \text{ d}), 5.15 (1 \text{ H}, \text{ d}), 1.34 (3 \text{ H}, \text{ s}) and 1.53 (3 \text{ H}, \text{ s})] and a vinylic proton <math>[\delta_{\rm H} 5.53 \text{ (br d}, J 5.9 \text{ Hz})]$ instead of those of the *exo*methylene ($\delta_{\rm H} 4.18$ and 4.51) in **2**. The presence of the much stronger fragment ion of m/z 198 $[(C_{14}H_{16}N)^+, 100\%]$ than that of m/z 130 in the EI mass spectra in 1 indicated an alkylated indole moiety. The presence of four aromatic protons $[\delta_{\rm H} 7.50 (\text{br d}), 7.03 (\text{br t}), 7.10 (\text{br t}) and 7.25 (\text{br d})]$ and the above data

Table 1	¹ H and ¹³ C NMR assignment for emindole PA 1		
Carbon			COLOC
no.	$\delta_{ m c}$	$\delta_{\mathrm{H}} \left(J/\mathrm{Hz} \right)$	correlation
1 (NH)		7.82 br s	
2	147.1 s		31-H
3	110.5 s		1-H (NH)
3a	130.4 s		1-H (NH), 8-H
4	119.3 d	7.50 br d (7.7)	
5	118.8 d	7.03 br t (7.7)	7-H
6	121.1 d	7.10 br t (7.7)	4-H
7	110.1 d	7.25 br d (7.7)	
7a	134.4 s	/120 of a (/.//)	
8	25.6 t	2.64 dd (14.1 12.1)	10-H
0	25.01	3.06 dd (14.1, 3.3)	10-11
9	46.5 d	1.65 dddd (12.1, 12.1, 3.7, 3.3)	27-H
10	40.5 u 26.8 t	1.05 dddd (12.1, 12.1, 3.7, 5.5) 1.27 dddd (13.2, 12.9, 12.1, 3.2)	2/-11
10	20.0 1	1.27 dddd (13.2, 12.9, 12.1, 3.2) 1.43 m	
11	25.0.4		
11	25.9 t	0.87 dddd (13.2, 13.2, 12.8, 3.7)	
10	45 ()	1.60 m	
12	45.6 d	1.89 br d (12.8)	25-H
13	39.8 s		10-Н, 27-Н
14	139.3 s		
15	114.0 d	5.53 br d (5.9)	
16	28.8 t	1.97 br dd (15.8, 10.6)	
		2.07 ddd (15.8, 5.9, 5.5)	
17	79.9 d	3.21 dd (10.6, 5.5)	
18	34.4 s		25-Н
19	36.4 t	1.17 ddd (13.2, 12.8, 4.3)	25-H
		1.85 ddd (12.8, 3.7, 3.3)	
20	22.1 t	1.43 m	
		1.47 dddd (13.2, 11.4, 10.8, 3.7)	
21	83.9 d	3.13 dd (10.8, 2.6)	23-H, 24-H
22	71.8 s		23-H, 24-H
22-OH		2.66 br s	,
23	23.8 q	1.14 s	
24	26.0 q	1.16 s	
25	13.2 q	0.71 s	
26	28.0* q	1.53 s	
27	23.3 q	1.04 s	
28	29.3 q 39.3 s	2.07.0	32-Н
28 29	146.6 d	6.12 dd (17.1, 10.6)	32-н 32-н
30	140.0 u 111.7 t		J2-N
	111./ t	5.13 d (10.6)	
21	25.5 -	5.15 d (17.1)	
31	25.5 q	1.34 s	
32	27.8 * q	1.53 s	

showed the presence of a 2-(1,1-dimethylallyl)indol-3-ylmethyl group.

From a detailed analysis of the ${}^{1}H{}^{-1}H$ and ${}^{1}H{}^{-1}C$ shift correlation spectra and the long-range shift correlation (COLOC) spectrum, the carbon skeleton of emindole PA was determined as 1. The assignments of the ${}^{1}H$ and ${}^{13}C$ NMR signals are summarized in Table 1. From the analysis of the correlation peaks in the ${}^{1}H{}^{-1}H$ nuclear Overhauser effect correlation (NOESY) spectrum (Fig. 1), the stereochemistry in 1 was determined. The structure and relative stereochemistry of emidole PA was consequently confirmed as that shown 1.

The correlation peaks in the NOESY spectrum of emindole Fig. 1 PĂ 1

Acklin et al.⁵ reported that indoloditerpenes such as paspaline 3 were derived from tryptophan and geranylgeraniol with skeletal rearrangement during the biosynthetic process in Claviceps paspali Stevens & Hall, whereas emindole DB 2 was derived without such a rearrangement. The biosynthesis of emindole PA 1 involves an additional carbon bond migration step [from C(12)-C(14) to C(12)-C(13)] from the same intermediate as 3.

Emindole PA 1 is the first example of an indoloditerpenoid bearing a 1,1-dimethylallyl residue at C-2 of the indole moiety.

References

- 1 E. Stahl and E. Kaldeway, Hoppe-Zeiler's Z. Physiol. Chem., 1961, 323, 182.
- 2 Institute for Fermentation (ed.), List of Cultures (IFO), 9th edn., Osaka, 1992, p. 299.
- 3 O. D. Hensens, D. Zink, J. M. Williamson, V. J. Lotti, R. S. L. Chang and M. A. Goetz, *J. Org. Chem.*, 1991, 56, 3399.
 4 K. Nozawa, S. Nakajima, K. Kawai and S. Udagawa, *J. Chem. Soc.*,
- Perkin Trans. 1, 1988, 1689.
- 5 W. Acklin, F. Weibel and D. Arigoni, Chimia, 1977, 31, 63.

Paper 4/01870B Received 29th March 1994 Accepted 5th May 1994